INVERSE OF A MATRIX

Definition

Let A be any square matrix. If there exists another square matrix B Such that $A B$ $=B A=I$ (I is a unit matrix) then B is called the inverse of the matrix A and is denoted by A^{-1}.

The cofactor method is used to find the inverse of a matrix. Using matrices, the solutions of simultaneous equations are found.
Working Rule to find the inverse of the matrix
Step 1: Find the determinant of the matrix.
Step 2: If the value of the determinant is non zero proceed to find the inverse of the matrix.
Step 3: Find the cofactor of each element and form the cofactor matrix.
Step 4: The transpose of the cofactor matrix is the adjoint matrix.
Step 5: The inverse of the matrix $\mathrm{A}^{-1}=\frac{\operatorname{adj}(A)}{|A|}$

Example

Find the inverse of the matrix $\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9\end{array}\right)$

Solution

Let $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9\end{array}\right)$

Step 1

$\begin{aligned}|A|=\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9\end{array}\right| & =1(18-12)-1(9-3)+(4-2) \\ & =6-6+2=2 \neq 0\end{aligned}$

Step 2

The value of the determinant is non zero
$\therefore \mathrm{A}^{-1}$ exists.

Step 3

Let A_{ij} denote the cofactor of $a_{i j}$ in $|A|$

$$
\left.\begin{aligned}
& A_{11}=\text { Cofactor of } 1=(-1)^{1+1}\left|\begin{array}{ll}
2 & 3 \\
4 & 9
\end{array}\right|=18-12=6 \\
& A_{12}=\text { Cofactor of } 1=(-1)^{1+3}\left|\begin{array}{ll}
1 & 3 \\
1 & 9
\end{array}\right|=-(9-3)=-6 \\
& A_{13}=\text { Cofactor of } 1=(-1)^{1+3}\left|\begin{array}{ll}
1 & 2 \\
1 & 4
\end{array}\right|=4-2=2 \\
& A_{21}=\text { Cofactor of } 1=(-1)^{2+1}\left|\begin{array}{ll}
1 & 1 \\
4 & 9
\end{array}\right|=-(9-4)=-5 \\
& A_{22}=\text { Cofactor of } 2=(-1)^{2+2}\left|\begin{array}{ll}
1 & 1 \\
1 & 9
\end{array}\right|=9-1=8 \\
& A_{23}=\text { Cofactor of } 3=(-1)^{2+3}\left|\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right|=-(4-1)=-3 \\
& A_{31}=\text { Cofactor of } 1=(-1)^{3+1} \left\lvert\, \begin{array}{l}
1 \\
2
\end{array}\right. \\
& 2
\end{aligned} \right\rvert\,=3-2=12
$$

The matrix formed by cofactors of element of determinant $|A|$ is $\left(\begin{array}{rrr}6 & -6 & 2 \\ -5 & 8 & -3 \\ 1 & -2 & 1\end{array}\right)$
$\therefore \operatorname{adj} \mathrm{A}=\left(\begin{array}{rrr}6 & -5 & 1 \\ -6 & 8 & -2 \\ 2 & -3 & 1\end{array}\right)$

Step 5

$$
\begin{aligned}
A^{-1}=\frac{\operatorname{adj} A}{|A|} & =\frac{1}{2}\left(\begin{array}{rrr}
6 & -5 & 1 \\
-6 & 8 & -2 \\
2 & -3 & 1
\end{array}\right) \\
& =\left(\begin{array}{rrr}
3 & \frac{-5}{2} & \frac{1}{2} \\
-3 & 4 & -1 \\
1 & \frac{-3}{2} & \frac{1}{2}
\end{array}\right)
\end{aligned}
$$

